自动编码是表示学习的一种流行方法。常规的自动编码器采用对称编码编码程序和简单的欧几里得潜在空间,以无监督的方式检测隐藏的低维结构。这项工作介绍了一个图表自动编码器,其中具有不对称编码编码过程,该过程可以包含其他半监督信息,例如类标签。除了增强使用复杂的拓扑结构和几何结构处理数据的能力外,这些模型还可以成功区分附近的数据,但仅与少量监督相交并与歧管相交。此外,该模型仅需要较低的复杂性编码器,例如局部线性投影。我们讨论了此类网络的理论近似能力,基本上取决于数据歧管的固有维度,而不是观测值的维度。我们对合成和现实世界数据的数值实验验证了所提出的模型可以有效地通过附近的多类,但分离不同类别,重叠的歧管和具有非平凡拓扑的歧管的数据。
translated by 谷歌翻译
平均场游戏(MFGS)是针对具有大量交互代理的系统的建模框架。他们在经济学,金融和游戏理论中有应用。标准化流(NFS)是一个深层生成模型的家族,通过使用可逆映射来计算数据的可能性,该映射通常通过使用神经网络进行参数化。它们对于密度建模和数据生成很有用。尽管对这两种模型进行了积极的研究,但很少有人注意到两者之间的关系。在这项工作中,我们通过将NF的训练视为解决MFG来揭示MFGS和NFS之间的联系。这是通过根据试剂轨迹重新解决MFG问题的实现,并通过流量体系结构对所得MFG的离散化进行参数化。通过这种联系,我们探讨了两个研究方向。首先,我们采用表达的NF体系结构来准确地求解高维MFG,以避开传统数值方法中维度的诅咒。与其他深度学习方法相比,我们的基于轨迹的公式编码神经网络中的连续性方程,从而更好地近似人口动态。其次,我们对NFS进行运输成本的培训正规,并显示了控制模型Lipschitz绑定的有效性,从而获得了更好的概括性能。我们通过对各种合成和现实生活数据集的全面实验来展示数值结果。
translated by 谷歌翻译
深度估计在现有的基于学习的多视图立体声方法中解决了作为回归或分类问题。虽然这两种表示最近展示了它们的优异性能,但它们仍然具有明显的缺点,例如,由于间接学习成本量,回归方法往往会过度装备,并且由于其离散预测而不能直接推断出精确深度的分类方法。在本文中,我们提出了一种新的代表性,称为统一,统一回归和分类的优势。它可以直接限制等级的成本量,但也实现了像回归方法的子像素深度预测。为了挖掘统一的潜力,我们设计了一个名为统一焦点损失的新损失函数,这更加统一,合理地打击样本不平衡的挑战。结合这两个负担的模块,我们提出了一个粗略的框架,我们称之为UNIMVSNet。首先在DTU和坦克和寺庙和寺庙基准测试的结果验证了我们的模型不仅执行最佳,还具有最佳的概括能力。
translated by 谷歌翻译
With the fast development of big data, it has been easier than before to learn the optimal decision rule by updating the decision rule recursively and making online decisions. We study the online statistical inference of model parameters in a contextual bandit framework of sequential decision-making. We propose a general framework for online and adaptive data collection environment that can update decision rules via weighted stochastic gradient descent. We allow different weighting schemes of the stochastic gradient and establish the asymptotic normality of the parameter estimator. Our proposed estimator significantly improves the asymptotic efficiency over the previous averaged SGD approach via inverse probability weights. We also conduct an optimality analysis on the weights in a linear regression setting. We provide a Bahadur representation of the proposed estimator and show that the remainder term in the Bahadur representation entails a slower convergence rate compared to classical SGD due to the adaptive data collection.
translated by 谷歌翻译
Model counting is a fundamental problem which has been influential in many applications, from artificial intelligence to formal verification. Due to the intrinsic hardness of model counting, approximate techniques have been developed to solve real-world instances of model counting. This paper designs a new anytime approach called PartialKC for approximate model counting. The idea is a form of partial knowledge compilation to provide an unbiased estimate of the model count which can converge to the exact count. Our empirical analysis demonstrates that PartialKC achieves significant scalability and accuracy over prior state-of-the-art approximate counters, including satss and STS. Interestingly, the empirical results show that PartialKC reaches convergence for many instances and therefore provides exact model counting performance comparable to state-of-the-art exact counters.
translated by 谷歌翻译
Robots are traditionally bounded by a fixed embodiment during their operational lifetime, which limits their ability to adapt to their surroundings. Co-optimizing control and morphology of a robot, however, is often inefficient due to the complex interplay between the controller and morphology. In this paper, we propose a learning-based control method that can inherently take morphology into consideration such that once the control policy is trained in the simulator, it can be easily deployed to robots with different embodiments in the real world. In particular, we present the Embodiment-aware Transformer (EAT), an architecture that casts this control problem as conditional sequence modeling. EAT outputs the optimal actions by leveraging a causally masked Transformer. By conditioning an autoregressive model on the desired robot embodiment, past states, and actions, our EAT model can generate future actions that best fit the current robot embodiment. Experimental results show that EAT can outperform all other alternatives in embodiment-varying tasks, and succeed in an example of real-world evolution tasks: stepping down a stair through updating the morphology alone. We hope that EAT will inspire a new push toward real-world evolution across many domains, where algorithms like EAT can blaze a trail by bridging the field of evolutionary robotics and big data sequence modeling.
translated by 谷歌翻译
Persuasion modeling is a key building block for conversational agents. Existing works in this direction are limited to analyzing textual dialogue corpus. We argue that visual signals also play an important role in understanding human persuasive behaviors. In this paper, we introduce the first multimodal dataset for modeling persuasion behaviors. Our dataset includes 199 dialogue transcriptions and videos captured in a multi-player social deduction game setting, 26,647 utterance level annotations of persuasion strategy, and game level annotations of deduction game outcomes. We provide extensive experiments to show how dialogue context and visual signals benefit persuasion strategy prediction. We also explore the generalization ability of language models for persuasion modeling and the role of persuasion strategies in predicting social deduction game outcomes. Our dataset, code, and models can be found at https://persuasion-deductiongame.socialai-data.org.
translated by 谷歌翻译
Deep reinforcement learning has recently emerged as an appealing alternative for legged locomotion over multiple terrains by training a policy in physical simulation and then transferring it to the real world (i.e., sim-to-real transfer). Despite considerable progress, the capacity and scalability of traditional neural networks are still limited, which may hinder their applications in more complex environments. In contrast, the Transformer architecture has shown its superiority in a wide range of large-scale sequence modeling tasks, including natural language processing and decision-making problems. In this paper, we propose Terrain Transformer (TERT), a high-capacity Transformer model for quadrupedal locomotion control on various terrains. Furthermore, to better leverage Transformer in sim-to-real scenarios, we present a novel two-stage training framework consisting of an offline pretraining stage and an online correction stage, which can naturally integrate Transformer with privileged training. Extensive experiments in simulation demonstrate that TERT outperforms state-of-the-art baselines on different terrains in terms of return, energy consumption and control smoothness. In further real-world validation, TERT successfully traverses nine challenging terrains, including sand pit and stair down, which can not be accomplished by strong baselines.
translated by 谷歌翻译
Graphene quantum dots provide a platform for manipulating electron behaviors in two-dimensional (2D) Dirac materials. Most previous works were of the "forward" type in that the objective was to solve various confinement, transport and scattering problems with given structures that can be generated by, e.g., applying an external electrical field. There are applications such as cloaking or superscattering where the challenging problem of inverse design needs to be solved: finding a quantum-dot structure according to certain desired functional characteristics. A brute-force search of the system configuration based directly on the solutions of the Dirac equation is computational infeasible. We articulate a machine-learning approach to addressing the inverse-design problem where artificial neural networks subject to physical constraints are exploited to replace the rigorous Dirac equation solver. In particular, we focus on the problem of designing a quantum dot structure to generate both cloaking and superscattering in terms of the scattering efficiency as a function of the energy. We construct a physical loss function that enables accurate prediction of the scattering characteristics. We demonstrate that, in the regime of Klein tunneling, the scattering efficiency can be designed to vary over two orders of magnitudes, allowing any scattering curve to be generated from a proper combination of the gate potentials. Our physics-based machine-learning approach can be a powerful design tool for 2D Dirac material-based electronics.
translated by 谷歌翻译
The unsupervised anomaly localization task faces the challenge of missing anomaly sample training, detecting multiple types of anomalies, and dealing with the proportion of the area of multiple anomalies. A separate teacher-student feature imitation network structure and a multi-scale processing strategy combining an image and feature pyramid are proposed to solve these problems. A network module importance search method based on gradient descent optimization is proposed to simplify the network structure. The experimental results show that the proposed algorithm performs better than the feature modeling anomaly localization method on the real industrial product detection dataset in the same period. The multi-scale strategy can effectively improve the effect compared with the benchmark method.
translated by 谷歌翻译